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The present work consists of two parts. Here in Part 1 ,  a scaling law (incomplete 
similarity with respect to local Reynolds number based on distance from the wall) is 
proposed for the mean velocity distribution in developed turbulent shear flow. The 
proposed scaling law involves a special dependence of the power exponent and 
multiplicative factor on the flow Reynolds number. It emerges that the universal 
logarithmic law is closely related to the envelope of a family of power-type curves, 
each corresponding to a fixed Reynolds number. A skin-friction law, corresponding 
to the proposed scaling law for the mean velocity distribution, is derived. 

In  Part 2 (Barenblatt & Prostokishin 1993), both the scaling law for the velocity 
distribution and the corresponding friction law are compared with experimental 
data. 

1. Introduction 
Turbulent shear flows, statistically stationary, and homogeneous in the direction 

of the mean flow, are of basic interest for modern turbulence studies, both from a 
purely theoretical viewpoint and in connection with technical and geophysical 
applications. We shall speak specifically about shear flows bounded by a rigid wall, 
e.g. flows in tubes and channels, and more specifically about shear flows in circular 
cylindrical tubes, for which the best experimental data are available. Considering 
these rather special flows can help to shed light on wider classes of shear flows, such 
as boundary layers. 

From the early 1930's on, two different forms were used for representing the mean 
velocity distribution u(y) within the main body of the flow. By main body, we mean 
the intermediate interval of distances y from the wall that are large enough in 
comparison with viscous layer thicknesses, but small with respect to a characteristic 
lengthscale of the flow (e.g. tube diameter d). The first form is: 

(A) the scaling (power-type) law, depending on the flow Reynolds number, 

f$ = CY", (1) 

where 4 = u/u*, 7 = u* Yl.. (2) 

Here u* = ( ~ / p ) i ,  T is the shear stress on the wall, p is the fluid density, v is the 
kinematic viscosity, C and a are dimensionless constants believed to be slowly 
varying functions of the flow Reynolds number Re = %cl/v, and fi is the mean fluid 
velocity averaged over the tube (or channel) cross-section. The second form is 

t Present address : Department of Applied Mathematics and Theoretical Physics, University of 
Cambridge, Silver Street, Cambridge CB3 9EW, UK. 
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(B) the universal logarithmic law 

# = ( 1 / K )  In 7+C,,  (3) 

where K (the von KBrman constant) and C, are believed to be universal constants, i.e. 
independent of Re. 

We emphasize that the derivations of both (A) and (B) are equally rigorous. 
However, they rest on entirely different basic assumptions. Indeed, both derivations 
start from similarity and asymptotic considerations, namely the assumption that the 
mean velocity gradient a,u can depend, in principle, on the following kinematic 
quantities, only: u*, y, v and d.  Therefore, from dimensional considerations, one 
obtains 

a p  = (U*/Y) @(%Re) or a?)+ = (1/7) @(7,Re), (4) 
where @ is some dimensionless function of its dimensionless arguments. Here we have 
replaced the dimensionless parameter Re, = u* d/v, suggested by dimensional 
analysis, by the flow Reynolds number Re = a d / v ,  because it follows from 
dimensional considerations that Re, is a certain function of Re only. 

The further assumptions on which (A) and (B) are based differ, however, in an 
essential way. The universal law (B) is derived (see e.g. Landau & Lifshiftz 1987; 
Monin & Yaglom 1971) from the assumption that for sufficiently large local Reynolds 
number 7 = u* y/v (the observation point y being outside the viscous layer) and 
sufficiently large flow Reynolds number Re = ad/v (the turbulent flow being assumed 
to be fully developed), the dependence of the velocity gradient on the molecular 
viscosity disappears completely. Various approaches to this derivation, such as the 
Isaakson and Millikan matching procedures (see Monin & Yaglom 1971), are merely 
different ways of introducing this very strong assumption, which means that the 
function @(7, Re) tends, as 7 +a, Re +a, to a finite limit, different from zero, so that 
a t  large 7 and Re this function can be replaced by its limiting value @( 00 , 00) = l / ~ ,  
say, whence the universal logarithmic law (B) follows directly by integration. 

According to the alternative assumption used in the derivation of the power 
law (A) (Barenblatt & Monin 1979; Barenblatt 1979), a finite limit of the function 
@(v,Re) as ~ + C O ,  Re+a does not exist. However, a t  large 7 (but not so large as to 
take us out of the intermediate region of the shear flow in which we are interested) 
and large Re, the function CD has, according to the alternative assumption, a power- 
type asymptotic behaviour 

where a and A depend somehow on the flow Reynolds number. In fact, we are 
interested not in the limiting value of @, but rather in the intermediate asymptotic 
behaviour of the function Q,, valid in the intermediate flow region, the main body 
of the flow referred to previously. If the intermediate asymptotic law ( 5 )  is valid, 
then we substitute ( 5 )  into (4) and obtain, by integration, the power law ( 1 ) .  Thus the 
dependence of the velocity gradient on molecular viscosity, using this assumption, 
does not disappear, however large both Reynolds numbers, 7 and Re, may be. 

Assumption ( 5 )  is an example of an incomplete similarity (or scaling) assumption. 
Using assumptions of this nature, L. Kadanoff, A. Patashinsky & V. Pokrovsky, and 
K. Wilson and others were able to obtain remarkable results in quantum field theory 
and in statistical physics (Amit 1978 ; Ma 1976). In  classical mathematical physics, 
and in particular in fluid mechanics, the use of such assumptions started from the 
paper of Guderley (1942) concerning a very intense converging shock wave. In  a 
different context, this idea was introduced even earlier in the papers by Kolmogorov, 

Q, -AT", ( 5 )  
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Petrovsky & Piskunov (1937) and by Fisher (1937) on the propagation of a gene 
having an advantage in the struggle for life, as well as in the paper of Zeldovich & 
Frank-Kamenetsky (1938) on the theory of flame propagation. 

We re-emphasize that neither the power-law (A) nor the logarithmic law (B) should 
be considered merely as convenient representations of empirical data. Rather, they 
have equally rigorous theoretical foundations which are, however, based on 
essentially different assumptions. 

An important question of a qualitative nature arises, therefore, as to whether 
either of these assumptions is correct. 

The results presented in this work give some evidence in favour of the scaling law 
(l), with an exponent a inversely proportional to the logarithm of flow Reynolds 
number, Re, and C a linear function of this logarithm. Therefore, the reciprocal of the 
logarithm of the flow Reynolds number appears naturally as the small parameter of 
the problem. 

2. Analysis 
2.1. The basic conjecture 

The modified theory of the local structure of developed turbulent flows now attracts 
wide attention, especially considering the corrections to the classical Kolmogorov- 
Obukhov exponents 5 and $. An important recent work of Castaing, Gagne & 
Hopfinger (1990) showed as one of its basic results that these corrections are 
inversely proportional to In Re,, where Re, is the Reynolds number based on the 
Taylor lengthscale A. (In fact, it is related quantities that have this Re, dependence, 
and not the exponent corrections themselves, but the distinction is immaterial in the 
present context.) Discussing this work a t  the recent seminar given by B. Castaing at  
the Laboratoire de Modelisation en Mecanique, Universitk Pierre et Marie Curie in 
Paris, the present author came to the conclusion that this result, if correct, should 
be a rather general property of developed turbulent flow, because it is based on 
general fractal properties of vortex dissipative structures in such flows. I n  particular, 
this means that such inverse proportionality to the logarithm of the Reynolds 
number could be valid for the exponent a in the power law (1). Rough estimates, 
fitted empirically from experimental data of Nikuradze (1932), given in the book by 
Schlichting (1968), appear to be in accordance with this conjecture, and will be shown 
here to be closely consistent with a specific form of the conjecture, in which, namely, 

(6) 
Therefore, without attempting to make the coefficient precise, all sixteen sets of 
experimental data? available in Nikuradze (1932), of mean velocity measurements a t  
various distances from the wall and a t  various Reynolds numbers (covering nearly 
three decimal orders of magnitude), were subjected to a rather severe procedure for 
the verification of the conjecture (6), namely that the functions q5r21nRe’31 were plotted 
as functions of 7 and inspected. The question was whether straight lines in the 
intermediate interval of 7 would appear. The processing of experimental data is 
considered a t  some length in Part 2 (Barenblatt & Prostokishin 1993). This 
processing clearly revealed intermediate straight lines for all sixteen sets; see Part 2, 
figure 1 (a-e). The author emphasizes the good accuracy in this: the exponent l/a = 
[2 In Re]/3  is large, of the order of ten, or so. Therefore even a small deviation in 

t It is essential that the data are presented in the form of tables. The paper by Nikuradze (1932) 
is unique in this respect. 

a = 3/2 In Re. 
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exponents could destroy the straight lines. By revealing the straight lines in an 
intermediate interval, we can consider this as direct experimental verification of the 
basic conjecture (6). 

One point should also be explained, and that is that there exists some obvious 
arbitrariness in the definition of Re. For instance, the maximum velocity can be 
taken instead of the average or radius instead of diameter. For the relation (6), this 
arbitrariness is immaterial because (6) should be the first term in the asymptotic 
expansion, valid when In Re, and not only Re, is itself large, so that another definition 
of Re will influence only higher-order terms of the asymptotics. This in itself lends 
support to the notion that In Re, rather than some other function of Re, should be 
involved. 

2.2. The form of the proposed scaling law 

Further processing (see details in Part 2 )  allows us to  obtain, also with rather good 
accuracy, the following linear dependence of the coefficient C in the power law (1) on 
In Re : 

1 5 y/3+5a 
4 3  2 2a ‘ 

C = -lnRe+- = 

Therefore, the power law (1) can be represented in the following form : 

q5=  3/( 2lnRe).  

(7) 

Simple transformations reduce (8) to a quasi-universal form involving a new function 
~ ( $ 1 :  

3 
=In?,  a=- a 1/3+5a 2 In Re’ 

1 2a4 
@ =-In 

This means that if (8)-(9) are true, then all experimental points, corresponding to 
various but sufficiently large Reynolds numbers 7 and Re, should settle down on a 
single curve in the ($,lnq)-plane (a straight line, in fact), bisectrix of the first 
quadrant. (We note that plotting lnq (or logr) on the abscissa is traditional in 
representing experimental data for velocity.) As is shown in Part 2 (figure 3), the 
overwhelming majority of the 256 experimental points available in the tables of 
Nikuradze (1932) do indeed settle down close to the bisectrix, in accordance with (9). 
Naturally, the points corresponding to small In 7 deviate below the bisectrix, but it 
should be emphasized that this deviation is systematic. 

2.3. Universal logarithmic law and its relation to the envelope of power-law curves 
In the (q5, In ?)-plane the curves which represent the power laws are different for 
various Reynolds numbers : 

They form a family of curves, which covers a certain part of the (q5, In 7)-plane; the 
Reynolds number is the parameter of this family. This family possesses an envelope 
which satisfies both (10) and the equation aRe F = 0. This last equation can be easily 
reduced to the form 
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FIGURE 1. Envelope, defined implicitly by letting Re vary in (10) and ( l l ) ,  of the scaling law curves 
in the ($, In T)-plane. Each scaling law curve has fixed Re. Although not a straight line, the 
envelope is very close to the generally accepted universal logarithmic law (the plotted straight line), 
even at moderate In 7. 

The pair of equations (lo), (11) parametrizes the envelope. This is plotted as the 
lower curve in figure 1. As can be seen, even for rather moderate In q, it  is close to 
the straight line 

q5 = 2.5 In 7+5.5,  

which represents (according to Schlichting 1968) the universal logarithmic law with 
empirically fitted constants. Even better will be the agreement (the two curves in the 
figure almost coinciding) if the constant 5.5 in (12) is replaced by the value 5.1, used, 
for instance, by Monin & Yaglom (1971, p. 273) .  This agreement seems to be natural 
from the present perspective because the envelope is the geometric locus of the points 
at which the derivative with respect to the flow Reynolds number vanishes. 
However, this was precisely the first of the assumptions on which the derivation of 
(3) was based! 

Moreover, if we allow In 7 to tend to infinity while we remain on one of the curves 
(10) at R e  = constant, the function @(y,Re), in the general similarity relation (4) 
tends obviously to infinity. However, if we allow In 7 to tend to infinity while we 
remain on the envelope, In Re tending simultaneously to infinity, we obtain a finite 
limit.? Indeed, for large In 7, the relation (11)  gives ( 3  In y ) / ( 2  lnRe)-+ 1 on the 
envelope, whence, together with (lo), we obtain 

(12) 

q 5 = -  d 3 e  In y+const, @ ( y , R e ) + 2 .  d 3 e  
2 

Therefore at large In q ,  all assumptions leading to the universal logarithmic law are 
fulfilled on the envelope, and thus this envelope can be identified with the universal 
logarithmic law. This allows us to obtain the value of the von KarmBn constant: 

K = - - 0.425, (14) 
2 

d 3 e  
t The reader is reminded here that we refer to intermediate asymptotics, and not to limits. 
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close t o  what was proposed in Nikuradze (1932), i.e. the experimental value K = 
0.417. In  fact, as we have seen, the envelope is sufficiently close to the straight line 
(12) ,  even at moderate In 7. At very large In 7, where ( 3  In 7 ) / ( 2  In Re) - 1, the value 
of const in (13) is revealed, being equal to 5 e / 2  - 6.79. However, such values of In y, 
where 20/.\/3 In 7 Q 1 and (3 In 7 ) / ( 2  In Re) - 1, were never reached in experiments, 
so the relation (12) (or even more the same straight line with the constant 5.1) is an 
approximation to the envelope at  moderate In 7. 

2.4. The skin friction law 
On the basis of the proposed scaling law (8) for the mean velocity distribution, the 
corresponding skin friction law can be derived and compared with experimental 
data, in particular with the data available in Nikuradze (1932). The coincidence of 
experimental data concerning the skin friction with predictions can also contribute 
to the verification of the proposed scaling law. 

We define the dimensionless skin friction coefficient h in a common way as 

According to (S), the following relation for the mean velocity u can be obtained: 

In  deriving the relation (16), the fact was used, as usual, that for developed turbulent 
flows in tubes (or channels), the contribution to bulk discharge can be neglected from 
the viscous layer near the wall, as can the contribution of the tiny region near the 
tube axis (or symmetry plane in a channel) where the scaling law (8) is not valid. 

Because of the basic conjecture (6), 

Re = a d / v  = exp ( 3 / 2 a ) ,  (17) 

whence, together with (16), we obtain 

and thus we reach the final relation for the dimensionless skin friction coefficient A, 
corresponding to the scaling law (S), as function of the Reynolds numbers: 

= S / p ( l + a ) ,  (19) 

where 
3 a=- e%(d/3+5a) 

Y(a) = 
2"a( i+a) (2+a) '  2 In Re' 

A comparison between the values of h predicted by the relation (19) and 
experimental values he of the skin friction coefficient is presented in Part 2 (figure 5 ) .  
According to the prediction, the quantity 

I 8  (21) 6 = he p / ( l + a )  

should be equal to unity. In fact, the deviations are within the experimental scatter. 
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3. Conclusions 
As we have seen, the scaling (power-type) law (A) has no less rigorous theoretical 

foundation than the universal logarithmic law. Experimental confirmation of the 
scaling law proposed here is a t  least no worse than that of the logarithmic law. 
However, these laws are based on essentially different physical assumptions : the 
logarithmic law is based on the assumption that the velocity gradient in the main 
body of a developed turbulent shear flow is completely independent of the molecular 
viscosity, and the scaling law is based on the assumption that dependence on 
molecular viscosity is preserved, although in an asymptotic power-type form. The 
difference is, as a matter of principle, essential. However, the data presented in 
Nikuradze (1932) correspond to the range of parameters 7, Re, where the difference 
between the predictions is not too large, because the experimental data are close to 
the envelope. Meanwhile, the scaling law corresponds to a one-parameter family of 
curves rather than to the single curve of the universal logarithmic law, so ranges of 
the parameters 7 and Re should exist where the difference is significant. Therefore a 
careful analysis of the available data giving the deviation from the logarithmic law, 
as well as further specially designed experiments, is needed in order to make a final 
choice between the two laws and the two assumptions. The extension of the proposed 
model presented here to heat and mass transfer, rough walls, and the action of 
polymeric additives, seems to be natural. 

The scale law (8) can be represented in the form 

u y  v-aya. .\/3+5a 
U =  

2a 

It is readily seen that we encounter here a situation which typifies incomplete self- 
similarities (many such examples can be found in Barenblatt 1979), namely that if 
we reduce molecular viscosity arbitrarily in the complete-similarity case of the 
universal logarithmic law, the asymptotics for the velocity gradient remain the 
same : molecular viscosity disappears completely from the list of governing 
parameters. This is not the case for the scaling law (8). The asymptotics (22) is 
invariant with respect to a transformation group 

v1 = pv, u1 = p-"u, (23) 
which is precisely what is known as the renormalization group (with ,u the group 
parameter). Taking as small parameter 

E = l / ln Re, (24) 
we come to the asymptotic expansions for the coefficients 01 and C of the scaling law 
(1 ), namely 

01 = a,€+a,E2+ ...) G = c,/e+c,+c,s+ .... 
A regular asymptotic procedure for obtaining the coefficients in (25) would be of 

special interest. 'The values of the first coefficients a,  = $, c1 = 1/2/3, c2 = obtained 
here should be obtained by this procedure. 

As a natural measure of the lengthscale of vortical dissipative structures, the 
quantity 

I = (a,U/U*)-l 

can be considered. The scaling law (8) gives 

1 =  2 yl-" (:T. 
2/3+5a 
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Comparing (27) with the relation for the approximation to the length of the fractal 
curve L, having fractal dimension 1 +p, provided by broken line segments with unit 
length 7, 

we can transform (28) into a relation for the diameter D of the fractal curve, 

L, = const D'+fl/rf, (28)  

D = const Li-" va, 01 = P/ (1  +P),  (29) 

similar to  (27), so the vortical filament can be considered as a fractal curve with 
fractal dimension l / ( l  -a) = 2 lnRe/(2 In Re-3). After some transformations we 
obtain 

2 e-alnRe 

2/3+5a 2 .4  1 +a) (2 +a) 
2 =  

For large lnRe, i.e. small 01 (30) is reduced to a relation 

where the dependence on Re has disappeared. 
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